VULNDET: A Distributed System for Detecting
Vulnerabilities in Project Dependencies

Abhinav Pandey
School of Computing

R.V. Rajagopalan
School of Computing

Abhinand N
Cyber Security Department

Aadarsh T Rajeev
School of Computing

Amrita Vishwa Vidyapeetham Amrita Vishwa Vidyapeetham Amrita Vishwa Vidyapeetham Amrita Vishwa Vidyapeetham

Kollam, India
meronaamabhinav @ gmail.com

Kollam, India

Parvathy R
School of Computing
Amrita Vishwa Vidyapeetham
Kollam, India
parvathyr @am.amrita.edu

Abstract— The widespread use of open-source software (0OSS)
introduces significant risks from insecure third-party dependencies.
Existing tools for vulnerability detection are often platform-specific
and lack centralized control. This paper presents VULNDET, a
distributed, platform-agnostic system for detecting and remediating
vulnerabilities in OSS project dependencies. Designed with exten-
sibility, it supports Node.js and Python environments and employs
language-specific modules for scalable detection. A key innovation
is an automated patching mechanism that combines Docker-based
sandboxing with lightweight LLM to generate and validate patches.
VULNDET achieves a higher detection rate on a custom CVE-
injected dataset compared with industry-standard tools. The system
enables proactive, automated, and cross-platform OSS vulnerability
management.

Index Terms—Common Vulnerabilities and Exposure (CVE),
Vulnerability detection, dependency security, open-source soft-
ware (OSS), Node.js, Python, MongoDB, Distributed systems

I. INTRODUCTION

Open-source software (OSS) has accelerated development cycles and
reduced costs, but it also introduces security risks through vulnerable
third-party dependencies. Unpatched flaws in these libraries can lead
to data breaches and system instability, making dependency manage-
ment a critical concern. These concerns are especially relevant in the
Indian context, where a large number of educational and governmental
institutions rely on OSS without sufficient mechanisms for formal
vulnerability handling, exposing critical systems to known exploits
[19].

Handling these dependencies can be a complicated process since
different open-source libraries differ in quality and maintenance levels.
Despite the availability of many tools, these mostly cater to specific
platforms which often leads to vendor locks and diminished overall
efficiency as far as comprehensive automated detection and centralized
monitoring are concerned.

In contrast, the proposed system is a pure mechanism that does not
work on any particular platform. It can be utilized in different settings
without being constrained to any particular technological framework.
Such an approach will give complete control over configuration, data
management, and monitoring processes to the users. The system
would automatically scan through third-party dependencies to identify
security problems along with a critical CVE ID and suggested fix.

rajagopalan602 @ gmail.com

Kollam, India
aadarsht087 @ gmail.com

Kollam, India
abhinandn @am.amrita.edu

A primary database is used to store all vulnerability information
to enable system administrators and security teams to monitor all the
vulnerabilities and work on them as needed. This kind of setup is
proactive in aiding them in identifying possible risk factors. Data is
replicated from various devices simultaneously under a master-slave
configuration making it convenient to scale up the system whenever
necessary. Moreover, there are authentication log-ins and frequent
verifications in place to help maintain the integrity and reliability of
the information.

The paper also proposes an automatic patching mechanism. We
utilize the use of an isolated Docker environment to patch the
vulnerabilities and check the stability of the system. This method
even makes use of LLM to generate build files whenever necessary.
We propose a bigger discussion for the stability of such an automated
module. This novel approach would require a lot of testing and
improvements before confirming that it is stable. This module if
implemented properly would solve a lot of problems existing in this
domain.

This paper dives deep into the system’s architecture and its scalable
architecture and how well it can handle dynamic and complex
workflows and setups. While this project focuses on Node.js and
Python environments, the same approach can easily be extended for
other languages and frameworks.

II. RELATED WORK

Open-source dependencies are one of the significant security concerns,
especially in large-scale and widely used software, where third-party
libraries are crucial but pose a huge risk. Several approaches have
been developed to detect and manage such vulnerabilities. This section
reviews some relevant studies and tools, each contributing insights
that inform the design and functionality of our proposed vulnerability
detection system.

VulPecker is an automated vulnerability detection system using
code similarity analysis to identify vulnerabilities in software [1].
It works by defining features of vulnerability patches and applying
code-similarity algorithms to detect similar vulnerabilities in different
copies of the software. Although VulPecker concentrates on C/C++
projects, the scalable similarity-based detection concept remains a
basis for detecting repeated vulnerabilities that may appear in software
dependencies across open-source ecosystems. Our system addresses
this by leveraging native ecosystem tools and Language-specific

modules for better adaptability and maintainability across different
programming environments.

Another critical research article explores the integration of Com-
mon Platform Enumeration (CPE) and Common Vulnerabilities and
Exposures (CVE) datasets into better matching software packages
to known vulnerabilities [2]]. Their method emphasizes classification
accuracy but remains passive—requiring manual correlation between
datasets. In contrast, VULNDET automates this process using cen-
tralized logging and real-time updates from audited scans, enabling
actionable insights without manual triage.

One study classifies the vulnerability detection tools based on their
analysis method, namely static, dynamic, or hybrid, and tests how
effective such tools are at detecting vulnerabilities commonly found
in Node.js projects [3]. This research is especially relevant to our
system because it puts a lot of emphasis on targeted, environment-
specific scanning, which our system does by using npm audit scans
specific to Node.js dependency security.

When researchers examined the incidence of vulnerabilities in
npm dependencies, they found that many apps are susceptible due
to outdated dependencies [4]. This research illustrates a common
security issue in dependency management: programs that do not
update packages on time expose themselves to known vulnerabilities.

Emerging approaches also explore Al-based techniques for vulnera-
bility detection in more specialized domains. A recent study by A. M.,
S.R., and S. G. focuses on smart contract security using Graph Neural
Networks (GNNs) to identify vulnerabilities like reentrancy, overflow,
and access control flaws in Ethereum-based contracts [21]]. Their
work proposes two GNN-based models—one optimized for accuracy,
and the other for cost-sensitive detection, prioritizing high-impact
vulnerabilities. While the overall accuracy of the standard model
was higher (96%), the cost-sensitive model, though slightly lower in
accuracy (94%), achieved significantly better outcomes in reducing
financial losses from undetected critical flaws. Similarly, Chandran et
al. proposed a classification model for detecting Advanced Persistent
Threats (APTs) [22]. Both works emphasize context-aware, automated
detection, aligning with VULNDET’s design goals. While VULNDET
does not currently use machine learning, these studies point to future
enhancements in intelligent, impact-driven vulnerability prioritization.

Our system’s centralised database and continuous monitoring pro-
vide regular, automated vulnerability checks, which help to reduce
this risk. GitHub’s Dependabot tool offers a popular solution for
dependency monitoring, automatically alerting users to vulnerabilities
in their software dependencies and suggesting updates [S]. VULNDET
decouples this constraint through a distributed master-slave model,
making it suitable for heterogeneous infrastructures, including private
networks or air-gapped systems.

To address dependency security in Python projects, Ochrona offers
a free vulnerability detection tool that integrates with the Python
ecosystem by scanning packages against an updated vulnerability
database [6]]. Ochrona’s targeted support for Python dependencies
informs the Python-specific component of our detection system,
enabling it to identify security risks in Python environments and
complementing the Node.js capabilities of npm audit.

A large-scale study [20] analyzed 32,164 vulnerabilities across
11,353 systems within 20 network labs of a global enterprise over
three months. Their findings underscore the magnitude and complexity
of vulnerability landscapes in distributed environments and highlight
the urgent need for automated, scalable approaches to vulnerability
detection and management. VULNDET addresses this gap by offering
decentralized scanning with centralized reporting, making it suitable
for similarly large and heterogeneous infrastructures.

III. IMPLEMENTATION

The architecture, components, and workflows of the vulnerability
detection framework are designed to support scalable and automated
tracking across multiple devices, with initial implementation targeting
Node.js and Python dependencies. The system is structured into two
core layers: General Setup, which performs device-specific analy-
sis and detection, and Server-Level Architecture, which manages
distributed monitoring and centralized processing. While currently
focused on Node.js, Python, Java and Go, the framework is built to
be extensible, allowing seamless integration of additional languages
and systems such as Linux in future expansions.

A. Local Scanning Setup

The local scanning setup has been designed mainly to identify and
analyze Node.js and Python projects on individual devices. This
phase includes features such as dependency extraction, vulnerability
detection, and secure data logging. The local scanning leverages the
different Language Adaptation Modules (LAM) to perform language-
specific dependency extraction and vulnerability assessment in indi-
vidual devices.

The Language Adaptation Modules (LAM) that are in use provide
a modular and extensible framework for integrating these language-
specific capabilities into the vulnerability detection system. Each of
the LAMs are tailored to handle the unique dependency extraction
and vulnerability assessment requirements that are specific to a
programming language. For example, by parsing package.json files
and utilizing npm audit, the LAM-Node recognises Node.js projects,
while LAM-Py, on the other hand, handles Python projects through
method like virtual environment detection and scanning with tool
such as Ochrona. The framework is designed for scalability, with
planned extensions such as LAM-Java for Maven or Gradle-based Java
projects and LAM-Go for Go modules, ensuring seamless support for
additional ecosystems as per the system’s future updates.

1) LAM-Node:

Node.js projects are identified by scanning directories for the presence
of a package. json file, which is the primary configuration file
for Node.js applications and includes critical information about the
project’s dependencies. The detection script performs a structured
directory search, where it validates each package. json file by
ensuring the absence of a node modules directory in any parent
directory, as previously demonstrated by Alfadel et al. [4]. This
validation stage sets apart primary Node.js projects from nested
dependencies under node modules folders, which could hold packages
unrelated to the main project.

After a primary Node.js project is verified, it is included in a project
list to be further processed. For each valid project, the system inter-
prets the package.json file to obtain a list of dependencies and their
versions, which are then cross-referenced for known vulnerabilities
with npm audit. This tool generates extensive reports of vulnerabilities
with severity levels as well as suggested updates, which are logged
for future analysis and fixes.

2) LAM-Py:

Python projects are identified using two primary methods: detect-
ing virtual environments and searching for requirements.txt
files in project directories. Virtual environments provide isolated
Python environments, preventing global libraries from interfering
with the identification of project-specific dependencies. To confirm

K
CHECK FOR
PACKAGE.JSON

SCANNING
PROCESS

i

Start Scan
Directories

DIRECTORY
HIERARCHY

=

Check
node_modules
Parent

PROJECTS

EVALUATE N
STORE VALID ‘

if valid

©

End

Store in Valid

if invalid Projects List

\\ W,

Fig. 1: LAM-Node Scanning Workflow

a directory as a Python project, the detection script checks for the
activate. sh file, commonly found in Python virtual environments.

If a requirements.txt file is missing, the system generates
one by activating the virtual environment and running the command
pip freeze > requirements.txt.

This captures a comprehensive list of installed dependencies and
their versions, creating a record necessary for vulnerability analysis.
Whether generated or pre-existing, the requirements.txt file is
parsed to produce an organized list of dependencies.

The system uses Ochrona, a Python-specific vulnerability scan-
ning tool, for vulnerability identification. Ochrona provides detailed
information on each detected vulnerability, including CVE details,
severity levels, and recommended remediation steps, as emphasized
in the work of Benthin Sanguino and Uetz [2]]. This allows quick
access and tracking of vulnerability data for every Python project.

‘ [VIRTUAL ENVIRONMENT

if not present ——> > — @

f if present
Check for Activate
T Environment

Generate
requirements.txt —__ s
Start Check for
activate.sh Store End
Detected
Project

if not present

Fig. 2: LAM-Py Scanning Workflow

The system gathers all key vulnerability data after it identifies
and examines all the Node.js and Python projects. This includes
how severe the issues are, CVE IDs, fixes to consider, and available
dependency updates. It then puts this info into a well-structured JSON
file. This JSON file gives a full picture of each project’s security
status, with specific fields for each vulnerability detail. These fields
cover the dependency name, version, CVE specifics, how serious the
issue is, and what steps to take. By arranging the data in a standard
JSON format, the system makes sure data handling is smooth and fits
into the main monitoring setup. It also helps with getting reports on
each device. This local JSON storage gives admins and developers
fast access to useful vulnerability data. This allows them to act and
fix issues in their projects.

B. Server-Level Architecture for Distributed Monitoring

Server-level architecture shown in Fig. B provides distributed scanning
of software vulnerabilities across numerous worker nodes, providing a
scalable and centralized mechanism of dependency security manage-
ment. Comprising a Master System and multiple Worker Nodes, the
architecture facilitates continuous scanning of vulnerabilities and data
collection from diverse projects in heterogeneous environments. De-
centralization of detection responsibilities with uniform surveillance
makes the system effective in security analysis without sacrificing
flexibility.

1) Master System:

The master system serves as the central hub for coordinating vul-
nerability data gathering, result storage, and offering a safe interface
for viewing reports. It makes the master node to see vulnerability
reports and check the security status of all worker nodes connected.
The master system comprises these sub-modules.

S5 MASTER SYSTEM
S uor
& uis —
Data Query —> o
Data Storage Indexing
@ '
Dashboard Data Report
Visualization Generation Q
Query
Processing

Fig. 3: Master system sub-modules and architecture

User Interface Subsystem (UIS):

The User Interface Subsystem (UIS) is a React web application
that is created to offer a user-friendly dashboard for the master node
(admin). The subsystem is the major interface for interaction with the
centralized monitoring features of the system. It enables the admin
to achieve fine-grained information about the security status of all
worker nodes and projects that are connected. The UIS provides all
the detailed information on vulnerabilities at the level of the individual
project including dependency information, identified vulnerabilities
along with their severity, CVE IDs, and suggested remedial actions.
This makes it possible for the master node to rank and remediate
vulnerabilities on the basis of severity, although it does so only at
the project level. It also aggregates this data into a single security
status overview on the entire ecosystem, from which it takes summary
metrics, trends in vulnerability, and history records for compliance
purposes into dashboards.

Unified Data Repository (UDR):

The Unified Data Repository (UDR) is a centralized MongoDB
database that acts as the primary storage for all system data. It is
designed to handle large-scale data storage needs while ensuring fast
and reliable access for analysis and reporting. The UDR organizes
and indexes vulnerability data, particularly CVE identifiers, along
with associated severity ratings, dependency versions, and remediation
steps. This indexing ensures that the system retrieves necessary
information rapidly whenever an on-demand query or report runs.
Such centralized management for maintaining large-scale data about
dependencies is cost-effective as highlighted by Latimer et al. [[7]. The
UDR keeps a record of old vulnerability data and project metadata
so that the system can analyze trends across time. This functionality
is critical to compliance audits, to conduct post-mortem examinations
of incidents, and to prove improvements in the security posture.

2) Worker Nodes

Each node performs local vulnerability scans on projects within its
environment, reporting findings back to the master system. A System
Orchestration Service (SOS) is deployed on individual workstations

or servers; these systems enable decentralized scanning. The main
components of each node include these sub-modules.

Scan Orchestration Service (SOS):

The Scan Orchestration Service (SOS) is a background service
that schedules and triggers scans at predefined intervals, ensuring
consistent and automated monitoring of dependencies, as shown in
Fig. @] Powered by Cron, SOS initiates scans at regular intervals (e.g.,
every six hours) without requiring manual intervention. This ensures
continuous monitoring and up-to-date vulnerability tracking. SOS
is designed to avoid interference with resource-intensive processes,
ensuring that scans do not impact system performance during peak
workloads. Administrators can configure scan frequencies to suit
specific needs, such as prioritizing high-risk environments with more
frequent scans or reducing intervals for stable setups.

-
&% SLAVE SYSTEMS

&3 SLAVE NODE

@ initiate scans —— >
System Files
SOS
encrypted data
0 fransfer T~ T 2
DPU Master
System
I\ J

Fig. 4: Worker nodes sub-modules and architecture

Data Packaging Unit (DPU):

The Data Packaging Unit (DPU) is responsible for preparing scan
results for secure transmission to the master system. It makes sure
that the data is standardized and ready for central processing. It
structures those results into well-defined JSON format. This format
includes its name, version, CVE Id and severity levels. The DPU
also employs encryption protocols like AES to ensure that there is
secure communication between salve and master system. Additionally,
timestamps and uuids are kept, so that the system keep track of reports
effectively even in case of partial data loss or transmission errors.

IV. SYSTEM-LEVEL VULNERABILITY MANAGEMENT

In addition to project-level scanning, our system also brings scanning
for system-level packages in both macOS and Linux environments.
When examining system-level vulnerabilities, we must consider var-
ious factors to avoid altering any critical files, especially since we
have sudo access. This module addresses vulnerabilities inherent in
system packages installed through APT, DNF, Pacman, Homebrew,
and MacPorts.

The system uses detection tools like Trivy and CycloneDxGen
to scan for installed packages against the latest CVE databases.
This integration in our system allows for the detection of direct
vulnerabilities as well as transitive dependencies that could potentially
introduce security threats [[14]. For this to happen properly, we have
created optimized scripts that account for numerous edge cases,
preventing any impact on critical files. The system creates formatted
reports containing severity levels and suggested mitigation steps.

V. AUTOMATED PATCHING MECHANISM

The Automated Patching Mechanism is an intelligent module in our
system. It is designed to streamline the process of automatically
updating vulnerable packages on a project level. But this aspect has
many considerations to be done before patching the dependencies. The
main problem statement is to make sure that after we have patched
a vulnerability, it should work properly and keep the project stable.
So, we integrated Docker containers and make use of large language
model (LLM) analysis with automated testing to proceed with such a
mechanism.

[software-inventory-api — -zsh — 97x14

\e[33m[INFO] Ael@m 739f2cce26b611cd5f478f31 container already exists. Time taken:
\e[32m[INFO] @\e[om 3005159baf2c452aafe55145 container created in 21.4887s.
\e[32m[INFO] W\e[om 6243f0ad987ddd2ealaeddb5 container created in 21.4887s.
\e[33m[INFO] Ael@m 16033e2007d34a2beele26e9 container already exists. Time taken:
\e[33m[INFO] Ael[0m 31fe750d90ec8104f7411fe@ container already exists. Time taken:
\e[33m[INFO] Ael@m 6788693e5d1808776832e626 container already exists. Time taken:
\e[33m[INFO] Ael@m 3a032f514b6d7d72c434ec13 container already exists. Time taken:
\e[32m[INFO] @\e[om fba46b5e855f917ebc7a9807 container created in 23.6835s.
\e[33m[INFO] Ael@m 9céec1fe272f2a65f47c370a container already exists. Time taken:
\e[32m[INFO] @\e[@m bc19b169618ce19591bdb2ea container created in 23.6835s.
(venv) abhinavpandey@Toothless software-inventory-api % source venv/bin/activate
(venv) abhinavpandey@Toothless software-inventory-api % pip freeze
annotated-types==0.7.0

anyio==4.6.2.postl

0.814462s.

0.23398s.
0.23398s.
0.557746s.
0.557746s.

0.431519s.

Fig. 5: Docker file generation through LLM

Firstly, we have to analyze whether the project is stable. For that,
there needs to be a proper build to do so with minimal manual
intervention. We are just considering Node and Python projects for
this automation as of now. The system has a segregation tool, which
divides the projects based on two criteria. First, if the project already
has a build setup in Docker, else it falls in the other category. If there
is no build file setup, the system makes use of an in-house deployed
small language model (can be configured as per requirements). The
inputs to the model can be package.json, readme.md, requirements.txt,
etc. The output is a structured Docker file that creates a build for the
project, installing all the required dependencies and smartly analyzing
the criteria for a build.

To tackle security loopholes effectively, Docker is created such
that it mounts the project, installs all the dependencies and adds
build scripts along with test cases to ensure stability. The testing
is done in an isolated Docker container, where the build is set up.
Updates are tested in a sandboxed Docker environment before they
are applied to avoid possible conflicts with current configurations.
This sandboxed solution prevents updates from introducing instability
into the production environment [16]]. The result is evaluated through
smoke tests and checkpoints, validating a stable build for the project.

LLM Integration for Dockerfile Generation:

o The LLM used is GPT-40-mini, accessed via the OpenAl APL

e Inputs include project files such as package.json,
requirements.txt, and README . md.

e The model is prompted to generate a minimal Dockerfile that
installs dependencies and builds the project.

o It is used in a stateless, on-demand fashion, with request-
response API calls.

« Output is parsed and validated syntactically before containerized
execution.

e Model size: 8 billion parameters, Context length: 128,000 tokens

o Temperature: 0.3 (To maintain a deterministic output)

This integration supports dynamic and context-aware Dockerfile cre-
ation and reflects modern cloud-native approaches [23], [24].

A. Multi-Layered Validation

Following compatibility checks, the system performs a three-stage
validation:

o Unit Tests: Ensures basic functionality is intact.

o Smoke Tests: Detects regressions caused by the update.

o Security Compliance: Assesses risk factors using Al-generated
test cases.

This layered approach improves software stability by minimizing the
risk of post-update failures.

VI. RESULTS

The efficiency of the presented system was verified through a series
of controlled tests that were designed to evaluate different aspects
of performance. We tried to simulate a real-world scenario across
different hardware configurations. We have defined proper metrics to
measure the accuracy of the system using our own dataset, which has
many vulnerabilities classified by type and severity. Then, finally, we
analyzed the overall system efficiency in comparison with industry
standard tools.

A. Dataset and Evaluation Metrics

For controlled testing, we have created a custom dataset that consists
of 30 named software project repositories based on Python and
JavaScript technologies. These repositories were created to resemble
real-world applications.

In these 30 projects, a total of 150 known vulnerabilities were
manually injected. These vulnerabilities were taken directly from the
National Vulnerability Database, National Institute of Standards and
Technology [18]. Each vulnerability instance was inserted into the
corresponding dependency files or code components, aligned with
known common vulnerabilities and exposures (CVE) patterns.

1) Dypes of Vulnerability and Severity Levels

The vulnerabilities in the dataset were grouped into 5 major security
categories and 3 levels of severity. They are as follows:

By Vulnerability Type:

Outdated Dependencies: 60 instances

Remote Code Execution (RCE): 20 instances

SQL Injection and Data Exposure: 18 instances
Cross-Site Scripting (XSS): 12 instances
Authentication and Access Control Flaws: 40 instances

By Severity:

o High Severity: 45 vulnerabilities
e Medium Severity: 65 vulnerabilities
o Low Severity: 40 vulnerabilities

2) Evaluation Metrics

In order to assess the efficiency and effectiveness of the designed
system. The following metrics were utilized, which altogether give a
full picture of the system’s performance in detection precision.

o Detection Rate: The ratio of known vulnerabilities properly
detected by the system.

o Average Scan Time (s): The duration for analysis and generation
of vulnerability reports per project.

B. Validation Methodology

VULNDET was run to validate the system against this dataset, and
the outputs were compared systematically with the ground truth. For
benchmarking, two industry tools—Dependabot and Nexus [Q—were
used for analysis. Spot-checks were manually performed to ensure
no false positives were missed with individual detection results. The
results of performance and outputs from detection verify that VUL-
NDET is a reliable and efficient vulnerability detection framework.

C. Benchmark Comparison

The comparison was made between our system, VULNDET, and two
popular tools: Dependabot and Nexus IQ. The findings are presented
in Table [l

TABLE I: Performance Comparison of Vulnerability Detection
Tools

Metric VULNDET | Dependabot | Nexus IQ
Detection Rate (%) 91.8 88.7 90.4
Average Scan Time (s) 60.4 72.8 58.9

To gain more insight into tool performance by vulnerability type
and severity, we categorized detection counts for each of the three
tools. Table [[T| and Table [[Tl] provide these findings.

TABLE II: Detection by Vulnerability Type

Vulnerability Type Total | Sys1 | Sys2 | Sys 3
Outdated Dependencies 60 59 56 58
Remote Code Execution (RCE) 20 18 17 19
Others (SQLi, XSS, Auth Flaws) 70 61 60 59
Total Detected 150 138 133 136

TABLE III: Detection by Vulnerability Severity

Severity Total | VULNDET | Dependabot | Nexus IQ
High 45 44 41 43
Medium 65 60 58 59
Low 40 34 34 34
Total Detected 150 138 133 136

This breakdown highlights VULNDET’s strong performance across
virtually all types of vulnerabilities, especially in its ability to catch
outdated dependencies and RCE vulnerabilities. Though all three are
good at handling high-severity problems, VULNDET enjoys a steady
lead even with medium- and low-severity vulnerabilities, making it
justify its worth in a thorough codebase review.

D. Insights and Interpretation

This shows the detection rates and scan times across our dataset fed
into those repositories. The 3 systems are here named as: System 1
(VULNDET), System 2 (Dependabot), and System 3 (Nexus 1Q). As
shown in Fig. [6] System 1 always shows higher detection rates with
less variability than the other two systems. But if we observe Fig. [7}
it highlights that System 3 has the fastest average scan time, while
System 2 exhibits the longest. These plots give us an indication of
the trade-offs between detection performance and efficiency for each
of these systems.

The results demonstrate that VULNDET achieves a higher detec-
tion rate than both competitors, with a detection accuracy of 91.8%.
This reflects the system’s strength in identifying a wide variety of
vulnerabilities, especially those introduced via outdated dependencies
and weak access controls.

Detection Rate Distribution (30 Projects)

94

92
Q
T
-2
.E 90
]
[
& PR R
a
88
Legend
System 1 (VULNDET) o
86 System 2 (Dependabot)
System 3 (Nexus 1Q) PR S
tion Rate tion Rate ion Rate
(VULNDY'-ﬂ peted Depef‘dabo“ peteC 5 (s \Q) Detec
gystem 1 gysterm 2\ gystem
System
Fig. 6: Detection Rate Distribution
Scan Time Distribution (30 Projects)
Legend
90 System 1 (VULNDET)
System 2 (Dependabot)
System 3 (Nexus Q)
80
£
= 70
c
m
o
(2]

60
50

ime

LNDET) sean Time xus Q) scan TME

gys\’.em

dabot) 50 A

gystem 1 2 (Dep®! gystem 3 (Ne

System

Fig. 7: Scanning Time Distribution

The high detection rate achieved by the system can be credited to
a number of important design choices. The first thing to consider is
that the system was tested against a well-filtered dataset of project
repositories which comprised a realistic and varied set of security
vulnerabilities. This ensures that the system was tested against real-
world scenarios present in actual codebases. Then, we are utilizing
a hybrid detection approach using signature-based matching and
optimized scripts that can detect dependencies on both the code
and system levels. Although the scan time is a bit greater than
Nexus IQ, it is still within reasonable parameters and significantly
faster than Dependabot. The compromise between detection depth
and performance makes it ideal for both development and production
environments where timely feedback is necessary.

Although VULNDET exhibits a slightly longer scan time than
Nexus IQ (60.4s vs. 58.9s), this trade-off is a result of its more
thorough and distributed scanning architecture. VULNDET performs
deeper scanning through language-specific modules (LAMs) like
LAM-Py and LAM-Node, which incorporate tools such as Ochrona
and npm audit. These scans include transitive dependency analy-
sis, which can increase scan time but also boosts detection accu-
racy—particularly for medium- and low-severity vulnerabilities [[I}
Unlike Nexus 1Q, VULNDET employs JSON-based detailed report-
ing per project, which slightly increases processing time but offers

richer metadata for remediation. But this marginal time cost is also
dependent on the coverage and environments on which the tests were
taken.

E. Scope for Research and Security Implications

During the evaluation phase, the implementation of the automated
patching mechanism showed promising capabilities with the approach.
Streamlining such a remediation process through isolated container
environment testing is stable. But the system is dependent on LLMs
for the patching logic. The whole logic’s behavior displays clear
potential for expansion into more intelligent and autonomous patch
generation systems.

If such mechanisms are perfected and supported by strong valida-
tion protocols, they could significantly reduce the time-to-fix for high-
severity vulnerabilities, particularly in large-scale or poorly main-
tained projects. This opens a broad scope for research in areas such as
machine learning-based code repair, semantic patch generation, and
trust-aware patch deployment systems.

There are a few things that should be considered when dealing with
such patching mechanisms. Some patches, while technically correct,
caused unstable builds or compatibility problems through breaking
changes or the absence of downstream support. So the concern
is that without proper testing, validation and rollback mechanisms,
automated patching can not be stable. If addressed properly, the
integrity and security of the system are safeguarded.

VII. LIMITATIONS AND FUTURE DIRECTIONS

The suggested vulnerability detection system currently suffers from
several issues. It offers a strong dependency security management
framework, and yet, the system’s overall vulnerability detection ca-
pability is scaled and not very efficient presently. At the moment, the
system is focused on the vulnerability detection of those projects that
use Python, JavaScript, Go, or Java. As mentioned, these technologies
are currently supported, but the support is extensible for further
languages and frameworks.

The centralized architecture of the system introduces a potential
single point of failure: the master node aggregates data from multiple
worker nodes. If the master node or its MongoDB instance is down,
the entire system cannot monitor and report on vulnerabilities, thereby
compromising the reliability of this system, especially in environments
with high security standards. Additionally, while the system has a
basic notification capability, it does not offer user-specific, detailed
messages that might be customised according to the importance of
vulnerabilities or project roles. The absence of personalised alerts
could cause remediation efforts to be delayed in situations where high-
priority vulnerabilities need to be addressed quickly.

As the quantity of data increases with that of monitored projects, a
MongoDB database may face a performance bottleneck in retrieving
information, thus slowing down responses in a large-scale distributed
environment. In addition to this, the system under consideration is
only available to macOS and Linux environments, therefore excluding
Windows-based projects. Therefore, as suggested by Johnson and
Clarke [11]], expanding this system to serve Windows-based environ-
ments would be one of the top objectives. Because of this platform
dependency, the system is less flexible and less suitable for businesses
that need cross-platform support.

Future development is planned in a number of areas to address
existing limits and enhance the system’s capabilities. More languages
and package managers, including Ruby, PHP, and others, would
increase the system’s suitability for a wider variety of applica-
tions. Integrating tools like Bundler-audit or Snyk could provide

multi-language support, increasing the system’s versatility in mixed
environments. Additionally, implementing redundancy and failover
mechanisms, such as a clustered setup or a backup master node, would
improve reliability by mitigating the single point of failure.

Another key improvement involves enhancing the notification sys-
tem. Introducing user-specific, role-based notifications and integrating
with communication platforms like Slack, email, or SMS would
allow administrators to receive targeted alerts. This will increase the
response rate, especially in high-security environments whereby the
need for quick identification of vulnerabilities is a priority. Extending
the compatibility of the system to add a Windows environment will
increase flexibility, where the organization can have cross-platform
infrastructural organizations fully utilize the system.

VIII. CONCLUSION

This paper introduces a vulnerability detection system that offers
an effective way to manage dependency security in Java, Python,
JavaScript and Go environments. The solution provides a centralized,
scalable way of tracking vulnerabilities across multiple projects and
devices by combining generated or capabilities with a distributed,
master-slave design. With automated dependency checks, secure data
storage, and continuous monitoring, this system empowers adminis-
trators to proactively address security risks in software dependencies,
supporting overall organizational security.

Despite its current shortcomings, such as platform limitations and
dependence on certain vulnerability scanners, the system provides a
valuable basis for scale vulnerability identification. Its design may
be enhanced with more languages, improved notification functions,
and advanced machine-learning capabilities. Future research will
focus on enhancing resilience, expanding platform compatibility, and
integrating real-time monitoring to meet the demands of dynamic,
high-security situations.

This technique is a majorly the biggest advance in vulnerabil-
ity management of open-source dependencies in order to meet the
needs of current software development, which incorporates important
factors such as security, scalability, and flexibility. The fundamental
framework provided here sets it for future advances in automated and
distributed vulnerability management across many diverse computing
platforms since the landscape of software security will continue to
change.

REFERENCES

[1] J. Shin, Z. Wang, Z. Chen, and Y. Cheng, “VulPecker: An automated
vulnerability detection system based on code similarity analysis,” Pro-
ceedings of the 31st Annual Computer Security Applications Conference,
2015, pp. 146-155.

[2] L. A. Benthin Sanguino and R. Uetz, “Software Vulnerability Analysis
Using CPE and CVE,” arXiv preprint arXiv:1705.05347, 2017.

[3] F. Brown, P. Black, and L. Choo, “Code-based vulnerability detection in
Node.js applications,” Proceedings of the 27th International Symposium
on Software Testing and Analysis, 2018, pp. 114-122.

[4] M. Alfadel, D. E. Costa, and E. Shihab, “On the discoverability of
npm vulnerabilities in Node.js projects,” ACM Transactions on Software
Engineering and Methodology, vol. 32, no. 4, 2023, pp. 1-27.

[5] GitHub, “GitHub Dependabot Documentation,” Accessed on: [insert
date], Available: https://docs.github.com/en/code-security/supply-chain-
security/keeping-your-dependencies-updated-automatically.

[6] “Ochrona: A Python package vulnerability detection tool,” Accessed on:
[insert date], Available: https://pypi.org/project/ochrona/.

[7] K. Latimer, M. J. Harrold, and D. Rosenblum, “Automated extraction
and analysis of vulnerability patterns in software dependencies,” IEEE
Transactions on Software Engineering, vol. 47, no. 3, pp. 512-529,
March 2021.

[8] N. Semenov, I. Ivanov, and D. Klebanov, “A distributed architecture

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

for real-time vulnerability scanning in cloud-native environments,” Pro-
ceedings of the IEEE International Conference on Cloud Computing
Technology and Science, 2020, pp. 71-78.

S. Miramirkhani, M. Protsenko, and A. Razavizadeh, “A hybrid approach
to vulnerability management in open-source ecosystems,” Journal of
Systems and Software, vol. 169, pp. 110711, 2021.

J. Derr, E. Manes, and A. Parnin, “Vulnerabilities in open-source
software: Can vulnerability prediction models help?” Proceedings of the
ACM Conference on Computer and Communications Security, 2019, pp.
1189-1201.

T. Johnson and R. Clarke, “Automated dependency management in
JavaScript and Python: Challenges and advances,” ACM Computing
Surveys, vol. 53, no. 2, pp. 29:1-29:35, Apr. 2020.

Z. Peng, X. Li, and Y. Xu, “Real-time monitoring and vulnerability
detection in microservices with distributed tracing,” IEEE Access, vol.
9, pp. 154867-154879, 2021.

C. Cesarano, V. Andersson, R. Natella, and M. Monperrus,
“GoSurf: Identifying Software Supply Chain Attack Vectors in
Go,” Proceedings of ACM Workshop on Software Supply Chain
Offensive Research and Ecosystem Defenses, 2024. Available:
https://doi.org/10.48550/arXiv.2407.04442.

Semenov, N., Ivanov, 1., Klebanov, D., A distributed architecture for
real-time vulnerability scanning in cloud-native environments,” IEEE
Cloud Computing, 2020.

Miramirkhani, S., Protsenko, M., Razavizadeh, A., ”A hybrid approach
to vulnerability management in open-source ecosystems,” Journal of
Systems and Software, vol. 169, 2021.

Derr, J., Manes, E., Parnin, A., ”Vulnerabilities in open-source software:
Can vulnerability prediction models help?” ACM CCS, 2019.

Peng, Z., Li, X., Xu, Y., "Real-time monitoring and vulnerability detec-
tion in microservices with distributed tracing,” IEEE Access, 2021.
Harold Booth (2015), National Vulnerability Database, National Institute
of Standards and Technology, https://nvd.nist.gov/ (Accessed 2025-04-
13)

K. Achuthan, S. SudhaRavi, R. Kumar, and R. Raman, “Security vul-
nerabilities in open source projects: An India perspective,” in *Proc. Int.
Conf. on Information and Communication Technology (ICoICT)*, 2014,
pp. 255-260, doi: 10.1109/ICoICT.2014.6914033.

M. R. Parimi and S. Babu, “Critical analysis of software vulnerabilities
through data analytics,” Proc. Int. Conf. Ind. Eng. Oper. Manage., Dubai,
UAE, Mar. 10-12, 2020, pp.

A. M, S. R and S. G, "Optimizing Smart Contract Security: A Cost-
Sensitive Graph Neural Network Approach for Vulnerability Detec-
tion,” 2024 International Conference on Electronic Systems and Intel-
ligent Computing (ICESIC), Chennai, India, 2024, pp. 191-195, doi:
10.1109/ICESIC61777.2024.10846442.

S. Chandran, Hrudya P, and P. Poornachandran, “An efficient clas-
sification model for detecting advanced persistent threat,” *2015 In-
ternational Conference on Advances in Computing, Communications
and Informatics (ICACCI)*, Kochi, India, 2015, pp. 2001-2009, doi:
10.1109/ICACCI.2015.7275911.

R. V. Savant, S. N. Sunder, S. Seshadri, N. Panda and S. M. Ra-
jagopal, “Cloud-Native CDN Monitoring Using CI/CD,” 2024 15th
International Conference on Computing Communication and Networking
Technologies (ICCCNT), Kamand, India, 2024, pp. 1-9, doi: 10.1109/IC-
CCNT61001.2024.10724159.

M. Pandey, N. S. S. Kunda, P. KC and K. D. Kumar, "Creating a
Virtual Literary Hub: Leveraging AWS for Deploying an Application
in the Cloud,” 2025 3rd International Conference on Smart Systems for
applications in Electrical Sciences (ICSSES), Tumakuru, India, 2025, pp.
1-6, doi: 10.1109/ICSSES64899.2025.11009959.

	Introduction
	Related Work
	Implementation
	Local Scanning Setup
	LAM-Node:
	LAM-Py:

	Server-Level Architecture for Distributed Monitoring
	Master System:
	Worker Nodes

	System-Level Vulnerability Management
	Automated Patching Mechanism
	Multi-Layered Validation

	Results
	Dataset and Evaluation Metrics
	Types of Vulnerability and Severity Levels
	Evaluation Metrics

	Validation Methodology
	Benchmark Comparison
	Insights and Interpretation
	Scope for Research and Security Implications

	Limitations and future directions
	Conclusion
	References

